EM-241-WB DC-MOTOR CONTROLLER 12-24V 15A

EM-241-WB
Modified from EM-241B v1.5
Added features

- Joystick mode = parameter 5=2
- Joystick kalibration parameter 19
- Dead band wide parameter 20
- small size
- high current output
- current limit
- zero current limit
- overvoltage brake
- speed setting
- Joystick input mode
- flexible control inputs
- impulse / continuous mode
- rail base mountable
- dip switch only in PCB. version B
- A softwares compatible for B ver. PCB.
- digital parameter setting

EM-241 is a full bridge DC-motor starter. It is designed to work with DC-motor in applications where some special functions are needed. Starter has adjustable acceleration and deceleration ramps, which make possible the smooth starts and stops. Adjustable current limit protects motor against overcurrent and it can also be used as an end-stop. This device has also two settable speeds, which are usefull in positioning applications. Control inputs FW and BW start the forward and backward run. STOP is for the motor shut-down but there are also available individual limit inputs for FW and BW directions. SPEED-2 input activates preset speed-2, but it can also be used as input for analog speed control signal 0-5V. FAULT terminal has at the same time input and output function, the pin is normally high, but is pulled down in overheat and conditionally also in current trip situation. If FAULT-line is pulled down externally it will cause a stop and prevent the new start. For example, it is possible to link fault pins of several units together and achieve a syncronous stop.
There are two selectable control modes, continuous and impulse. In continuous mode the motor runs as long as the control is active. In impulse mode a short comand starts the motor, and only a new impulse will change the status. There is also few special settings start-kick and auto reverse. The card has selectable input logics. Inputs are divided in two groups, control and limit -inputs. Groups can be individually set for NPN or PNP logic. The parameters are set with EM-236 interface unit. Operation of the controller and some of its functional values can also be monitored with EM-236 interface unit.

TECHNICAL DATA (prog ver. 241A v1.5)

Supply voltage cont. max. 10-35V
Overvoltage limit adjustable 15-40V (connect motor to freewheel)
Overvoltage dynamic brake 40V (shorting motor poles)
Start up voltage 9 V , shutdown voltage 8 V
Motor current cont. max. 15 A , peak max. $30 \mathrm{~A}\left(\mathrm{Ta}<50^{\circ} \mathrm{C}\right.$)
Current limit adjustable 0.1-20A (at start max 30 A)
Overheat limit $100^{\circ} \mathrm{C}$
Start and stop ramp adjustable 0-5s
PWM frequency 2 kHz
Speed input scale (speed-2) 0-5V $=0-100 \%$ pwm
Input control logic: high $=4-30 \mathrm{~V}$, low $=0-1 \mathrm{~V}$
Control input impedances typ. 47kohm
Limit FW / BW input imped. typ 10kohm
Control input response time typ 5 ms .
Fault out. NPN open coll. $\max 30 \mathrm{~V} / 50 \mathrm{~mA}$
Fault in actives Uin < 1V (NPN)
Motor and supply connectors 2.5 mm
Control connectors 1 mm
Dimensions $42 \times 72 \times 25 \mathrm{~mm}$
Dimensions in DIN-rail base $45 \times 80 \times 45 \mathrm{~mm}$
CE-tested for industrial environment (emc)
Operating temp (Ta) $-40 \ldots . .60^{\circ} \mathrm{C}$
Weight 75 g

Supply voltage must be filtered DC of $10-35 \mathrm{~V}$, and ripple should be less than 30% at full load.
CAUTION ! Wrong polarity can damage the unit. CAUTION ! Unit doesn't have an internal fuse, so an external fuse should be added if fuse required.

MONITORABLE VALUES

$1 / 5$ Motor current 0-20A (0-200)
2/5 PWM-level-\% 0-100\% (0-100)
$3 / 5$ hour counter (max.65535h)
$4 / 5$ start counter (max.65535)
$5 / 5$ carry counter for start counter

FAULT-LED signal codes

1. power on	one blink
2. current on limit	led is lit
3. current trip	fast blinking...
4. zero-cur trip	long blink- short pause...
5. overvoltage	$4 \times$ blink -pause...
6. overheat	short blink- long pause...
7. timeout	$3 \times$ blink + long blink...
8. fault input	$2 \times$ short $+1 \times$ long blink

Adjusting and parameter setting of eg.
current limit value, ramp times and speed-2
value is done with the EM-236 interface unit.
With EM-236 the parameters and adjusted
values can also be copied to multible
devices accurately and reliably.

SETTABLE PARAMETERS 20pcs. (defaults in brackets)
1- command mode: 0,1 and 2 (0)
0 = continuos FW / REV
1 = impulse commands FW / REV. with stop
2=impulse commands FW / REV without stop
2- start condition combinations: 0-3 (1)
$0=$ start both direction after I-trip and Stop
1= start only opposite direction after l-trip
$2=$ start only opposite direction after Stop
$3=$ start only opposite direction after 1 - and Stop
3- input logic combinations 0-3 PNP/NPN (0) $0=$ command and limit inputs as PNP (positive) 1 = command inputs NPN, and limit inputs PNP $2=$ command inputs PNP. and limit input NPN $3=$ command and limit inputs NPN (negative)
4- running speed-1: 0-100\%/0-100 (100
5- running speed-2: 0-100\% / 0-100 (50) - Note: If selected to 0 or 1 "speed2-input" is used as analog $0-5 \mathrm{~V}$ speed control input, and - when 1 is selected FW direction is automatically "on" and FWD input works as direction change

- when 2 is selected = joystick mode

6- current limit FW: 0.1-20A / 1-200 (30
7- current limit REV: 0.1-20A / 1-200 (30
8- Trip combinations: 0-3 (1)
$0=$ no l-trip, no zero-current-trip
1= only I-trip
2= only zero-current-trip
$3=$ both I-trip and zero-current-trip
9- I-trip delay: 0-255ms / 0-255 (20)
10- Fault output combinations: 0-3 (1)
$0=1$-trip and zero current won't cause fault output signal
1 = only l-trip causes fault output signal
2= only zero current causes fault output signa
$3=$ both l-trip and zero currenT causes fault output signal.
11- overvoltage limit: 15-40V / 15-40 (35)
Overvoltage can be caused by load driving the motor or when braking the speed down but supply can not accept the current back from driver. Exceeding the limit will cause the power stage set to free-wheel state.
With a direct battery supply the brake current is charging the battery and the voltage will not normally rice.
There is also 40V fixed dynamic brake point = motor pole shorted
12- load compensation: 0-255 / 0-255 (0)
Load compensation (RxI) improves low speed and start
torgue, but too high compensation achieve unstable running. Run motor at low speed (30\%) Increase compensation with small steps until motor start behaviour unstable,
t hen decrease value about 10%
13- timeout: 0-255s. / 0-255 (0=not in use) (0)
14- Reset for start and hour-counter $0 / 1$ (0)
selecting 1 and push SAVE $\Rightarrow>$ reset counters
15- start ramp: 0-5s / 0-500 (100)
16- stop ramp: 0-5s / 0-500 (100)
17- start-kick $0-200 \mathrm{~ms} / 0-200$ (0)
This gives full drive at start and I -lim is 30A
The start kick length is $0-200 \mathrm{~ms}$.
18- I-trip auto reversing 0-5s / 0-500 (0)
Change automatically run direction when I-trip occurs
the revesing time will select with this parameter
19- Joystick calibration options.
-change 0 to 1 starts autocalibraton cycle, 6 sec .
-2 = fixed setting. $2.75 \mathrm{~V}=$ stop, $5.5 \mathrm{~V}=\mathrm{FWD}, 0 \mathrm{~V}=$ REV
20- Dead band wide 0-50\% / 0-50 (20)

AUTO CALIBRATION OF JOYSTICK RANGE

Change parameter 19 0->1, Indication led goes ON
Turn joystick first max. and then min. position
Calibration time is about 5 s .
When led goes OFF, the device is calibrated.

