Description The AZBH60A8 servo drive is designed to drive brushless and brushed DC motors at a high switching frequency. To increase system reliability and to reduce cabling costs, the drive is designed for direct integration into your PCB. The AZBH60A8 is fully protected against overvoltage, under-voltage, over-current, over-heating, invalid commutation, and short circuits. A single digital output indicates operating status. The drive interfaces with digital controllers that have analog +/-10V output. The AZBH60A8 can utilize either Hall Sensor or Tachometer feedback for velocity control. This servo drive requires only a single unregulated isolated DC power supply, and is fully RoHS (Reduction of Hazardous Substances) compliant. See Part Numbering Information on last page of datasheet for additional ordering options. | Power Range | | |--------------------|-------------| | Peak Current | 60 A | | Continuous Current | 30 A | | Supply Voltage | 10 - 80 VDC | ### **Features** - ▲ Four Quadrant Regenerative Operation - Direct Board-to-Board Integration - Lightweight - High Switching Frequency - ▲ High Performance Thermal Dissipation - Differential Input Command - Digital Fault Output Monitor - ▲ 12VDC Operation - Hall Velocity Mode - Current Monitor Output - Compact Size - High Power Density ### HARDWARE PROTECTION - Under-Voltage - Over-Voltage - Over-Current - Over-Temperature - Short-circuit (phase-phase) - Short-circuit (phase-ground) # INPUTS/OUTPUTS - Digital Fault Output - Digital Inhibit Input - Analog Current Monitor - Analog Command Input - Analog Current Reference #### COMMUTATION Trapezoidal # FEEDBACK SUPPORTED - Hall Sensors - Tachometer (± 60 VDC) ## MODES OF OPERATION - Current - Duty Cycle (Open Loop) - Hall Velocity - Tachometer Velocity ### **MOTORS SUPPORTED** - Three Phase (Brushless) - Single Phase (Brushed, Voice Coil, Inductive Load) ## **COMMAND SOURCE** ±10 V Analog # **COMPLIANCES & AGENCY APPROVALS** - UL - cUL - CE Class A (LVD) - CE Class A (EMC) - RoHS # **BLOCK DIAGRAM** | | Information on Approvals and Compliances | | | |-----------------|---|--|--| | c FL °us | US and Canadian safety compliance with UL 508c, the industrial standard for power conversion electronics. UL registered under file number E140173. Note that machine components compliant with UL are considered UL registered as opposed to UL listed as would be the case for commercial products. | | | | (€ | Compliant with European EMC Directive 2004/108/EC on Electromagnetic Compatibility (specifically EN 61000-6-4:2007 for Emissions, Class A and EN 61000-6-2:2005 for Immunity, Performance Criteria A). LVD requirements of Directive 2006/95/EC (specifically, EN 60204-1:2004, a Low Voltage Directive to protect users from electrical shock). | | | | ROHS | RoHS (Reduction of Hazardous Substances) is intended to prevent hazardous substances such as lead from being manufactured in electrical and electronic equipment. | | | ## **SPECIFICATIONS** | | Power S _l | pecifications | | |---|----------------------|---|--| | Description | Units | Value | | | DC Supply Voltage Range | VDC | 10 - 80 | | | DC Bus Over Voltage Limit | VDC | 88 | | | DC Bus Under Voltage Limit | VDC | 9 | | | Maximum Peak Output Current ¹ | A | 60 | | | Maximum Continuous Output Current | Α | 30 | | | Maximum Continuous Output Power | W | 2280 | | | Maximum Power Dissipation at Continuous Current | W | 120 | | | Minimum Load Inductance (Line-To-Line) ² | μH | 100 | | | Internal Bus Capacitance ³ | μF | 141 | | | Low Voltage Supply Outputs | - | +6 VDC (30 mA) | | | Switching Frequency | kHz | 33 | | | | Control S | pecifications | | | Description | Units | Value | | | Command Sources | - | ±10 V Analog | | | Feedback Supported | - | Halls, Tachometer (± 60 VDC) | | | Commutation Methods | - | Trapezoidal | | | Modes of Operation | - | Current, Hall Velocity, Duty Cycle, Tachometer Velocity | | | Motors Supported | - | Three Phase (Brushless), Single Phase (Brushed, Voice Coil, Inductive Load) | | | Hardware Protection | - | Invalid Commutation Feedback, Over Current, Over Temperature, Over Voltage, Under Voltage, Short Circuit (Phase-Phase & Phase-Ground) | | | | Mechanical | Specifications | | | Description | Units | Value | | | Agency Approvals | - | CE Class A (EMC), CE Class A (LVD), cUL, RoHS, UL | | | Size (H x W x D) | mm (in) | 76.2 x 50.8 x 22.9 (3 x 2 x 0.9) | | | Weight | g (oz) | 120 (4.23) | | | Heatsink (Base) Temperature Range ⁴ | °C (°F) | 0 - 75 (32 - 167) | | | Storage Temperature Range | °C (°F) | -40 - 85 (-40 - 185) | | | Form Factor | - | PCB Mounted | | | P1 Connector | - | 16-pin, 2.54 mm spaced header | | | | | | | #### Notes P2 Connector P3 Connector Maximum duration of peak current is ~2 seconds. Peak RMS value must not exceed continuous current rating of the drive. 22-pin, 2.54 mm spaced, dual-row header 22-pin, 2.54 mm spaced, dual-row header - 2. Lower inductance is acceptable for bus voltages well below maximum. Use external inductance to meet requirements. - Requires a 470μF/100V electrolytic capacitor near the P2 Power Connector between High Voltage and Power Ground pins. Additional cooling and/or heatsink may be required to achieve rated performance. 3. # **PIN FUNCTIONS** | | | P1 - Signal Connector | | |-----|---------------------------|---|-----| | Pin | Name | Description / Notes | 1/0 | | 1 | +REF IN | Differential Reference Input (±10 V Operating Range, ±15 V Maximum Input) | I | | 2 | SIGNAL GND | Signal Ground | GND | | 3 | -REF IN | Differential Reference Input (±10 V Operating Range, ±15 V Maximum Input) | I | | 4 | CURRENT MONITOR | Current Monitor. Analog output signal proportional to the actual current output. Scaling is 20 A/V. Measure relative to signal ground. | 0 | | 5 | INHIBIT IN | TTL level (+5 V) inhibit/enable input. Leave open to enable drive. Pull to ground to inhibit drive. Inhibit turns off all power devices. | I | | 6 | +V HALL OUT | Low Power Supply For Hall Sensors (+6 V @ 30 mA). Referenced to signal ground. Short circuit protected. | 0 | | 7 | SIGNAL GND | Signal Ground | GND | | 8 | HALL 1 | | I | | 9 | HALL 2* | Single-ended Hall/Commutation Sensor Inputs (+5 V logic level) | I | | 10 | HALL 3 | | I | | 11 | CURRENT REFERENCE | Measures the command signal to the internal current-loop. This pin has a maximum output of ±7.2 V when the drive outputs maximum peak current. Measure relative to signal ground. | 0 | | 12 | FAULT OUT | TTL level (+5 V) output becomes high when power devices are disabled due to at least one of the following conditions: inhibit, invalid Hall state, output short circuit, over voltage, over temperature, power-up reset. | 0 | | 13 | NC | Not Connected (Reserved) | - | | 14 | NC | Not Collifered (Izeselved) | - | | 15 | VEL MONITOR OUT / TACH IN | Velocity Monitor (±10 V range). Analog output proportional to motor speed. In Hall Velocity mode, output is proportional to the electrical cycle frequency. Hall Velocity scaling is 100 Hz/V. For Tachometer Velocity mode, feedback voltage range is ±60 VDC max. | O/I | | 16 | OFFSET | Connection to external resistance for command offset adjustments. Apply a ±VDC (10V Max) signal through an external potentiometer into this pin to offset the input gain. | ı | | | | | P2 and P3 - Power Connector | | |-----|-----|--------------|--|-----| | Р | in | Name | Description / Notes | 1/0 | | 1b | 1a | HIGH VOLTAGE | DC Power Input. 3A Continuous Current Rating Per Pin. Requires at least 470 µF / 100 V external electrolytic capacitor connected as close as possible to pins between High Voltage | I | | 2b | 2a | HIGH VOLTAGE | and Power Ground. | I | | 3b | | NC | Not Connected (Reserved) | - | | | 3a | NC (KEY) | Key: No Connection (pin removed) for P2. Not Connected (Reserved) for P3. | - | | 4b | 4a | PWR GND | Downs Crown (Common With Cignal Crown) 24 Continuous Current Poting Page | GND | | 5b | 5a | PWR GND | Power Ground (Common With Signal Ground). 3A Continuous Current Rating Per Pin | GND | | 6b | 6a | MOTOR C | | 0 | | 7b | 7a | MOTOR C | | 0 | | 8b | 8a | MOTOR B | Motor Phase Outputs. Current output distributed equally across both P2 and P3 connectors | 0 | | 9b | 9a | MOTOR B | – 8 pins per motor phase. At ambient temperatures above 50°C, 3A continuous current
carrying capacity per pin. At 25°C ambient, 6A continuous current carrying capacity per pin. | | | 10b | 10a | MOTOR A | | | | 11b | 11a | MOTOR A | | 0 | ^{*}For use with Single Phase (Brushed) motors, ground Hall 2 and only connect motor leads to Motor A and Motor B. ## HARDWARE SETTINGS ### **Switch Functions** The DIP Switch bank is located on the underside of the drive PCB. The ON setting is labeled on the switch housing. Setting switches towards the P2 Power Connector is the ON position. Setting switches towards the P1 Signal Connector is the OFF position. The tables below describe switch functionality. | Switch | Description | Setting | | |--------|---|-----------------|-------------| | Switch | | On | Off | | 1 | Duty Cycle mode selector. Activates internal PWM feedback. | Duty Cycle mode | Other modes | | 2 | Activate velocity feedback or monitor. For Hall Velocity mode, activates feedback. For Current mode, activates velocity monitor. | Active | Inactive | | 3 | Current mode selector. | Current mode | Other modes | | 4 | Velocity feedback polarity for Hall Velocity mode. Changes the polarity of the internal feedback signal and the velocity monitor output signal. Inversion of the feedback polarity may be required to prevent a motor run-away condition. | Standard | Inverted | ### Mode Selection Table | | SW1 | SW2 | SW3 | |---------------------|-----|--------|-----| | CURRENT | OFF | ON/OFF | ON | | DUTY CYCLE | ON | OFF | OFF | | HALL VELOCITY* | OFF | ON | OFF | | TACHOMETER VELOCITY | OFF | OFF | OFF | ^{*}NOTE: See details of switch 4 for further Hall Velocity configuration information. ### **Jumper Settings** Jumpers are SMT, 0 ohm resistors located on the underside of the drive PCB. By default, the drive is configured with the jumpers installed. Typical drive operation will not require the jumpers to be removed. Please contact the factory before jumper removal. | Jumper | Jumper Description | | uration | |--------|--|---------------|-------------| | | SMT Jumper (0Ω Resistor) | Not Installed | Installed | | JE1 | Inhibit logic. Sets the logic level of inhibit pins. Labeled JE1 on the PCB of the drive. | Low Enable | Low Inhibit | | JE2 | Hall sensor phasing. Selects 120 or 60 degree commutation phasing. Labeled JE2 on the PCB of the drive. | 60 degree | 120 degree | ## **Potentiometer Functions** Potentiometers are located between the PCB and the drive baseplate, and are accessible from the side. Potentiometers are approximately linear and have 12 active turns with 1 inactive turn on each end. | Potentiometer | Description Turning CW | | |---------------|--|--------------------------------------| | 1 | Loop gain adjustment for duty cycle / velocity modes. Turn this pot fully CCW in current mode. Located closest to the corner of the PCB. | Increases gain | | 2 | Offset. Used to adjust any imbalance in the input signal or in the amplifier. Located furthest from the corner of the PCB. | Adjusts offset in negative direction | ## MECHANICAL INFORMATION | P1 - Signal Connector | | | |-----------------------|---------------------|--| | Connector Information | | 16-pin, 2.54 mm spaced header | | Mating Connector | Details | Samtec: BCS-116-L-S-PE | | Mating Connector | Included with Drive | No | | | | 13 NC 14 NC 16 OFFSET 11 CURRENT REFERENCE 9 HALL 2 7 SIGNAL GND 7 SIGNAL GND 1 +REF IN 1 +REF IN 2 SIGNAL GND 2 SIGNAL GND 4 CURRENT MONITOR 10 HALL 3 11 + NC 16 OFFSET | # MOUNTING DIMENSIONS ### PART NUMBERING INFORMATION ADVANCED Motion Controls AZ series of servo drives are available in many configurations. Note that not all possible part number combinations are offered as standard drives. All models listed in the selection tables of the website are readily available, standard product offerings. ADVANCED Motion Controls also has the capability to promptly develop and deliver specified products for OEMs with volume requests. Our Applications and Engineering Departments will work closely with your design team through all stages of development in order to provide the best servo drive solution for your system. Equipped with on-site manufacturing for quick-turn customs capabilities, ADVANCED Motion Controls utilizes our years of engineering and manufacturing expertise to decrease your costs and time-to-market while increasing system quality and reliability. ### **Examples of Modifications and Customized Products** - ▲ Integration of Drive into Motor Housing - ▲ Mount OEM PCB onto Drive Without Cables - ▲ Multi-axis Configuration for Compact System - ▲ Custom PCB and Baseplate for Optimized Footprint - ▲ RTV/Epoxy Components for High Vibration - ▲ OEM Specified Connectors for Instant Compatibility - OEM Specified Silkscreen for Custom Appearance - ✓ Increased Thermal Limits for High Temp. Operation - ▲ Integrate OEM Circuitry onto Drive PCB - Custom I/O Interface for System Compatibility - ▲ Preset Switches and Pots to Reduce User Setup - Optimized Switching Frequency - ▲ Ramped Velocity Command for Smooth Acceleration - ▲ Remove Unused Features to Reduce OEM Cost - ▲ Application Specific Current and Voltage Limits Feel free to contact Applications Engineering for further information and details. # **Available Accessories** ADVANCED Motion Controls offers a variety of accessories designed to facilitate drive integration into a servo system. Visit www.a-m-c.com to see which accessories will assist with your application design and implementation. All specifications in this document are subject to change without written notice. Actual product may differ from pictures provided in this document.